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1. Introduction 

With this special issue of the Joumal of Engineering Mathematics we commemorate and 
celebrate the appearance, one hundred years ago (Fig. 1), of a paper [1] by the Dutch physicist 
H.A. Lorentz in which he put forward some seminal ideas on slow viscous flow (see also [2- 
4]). Lorentz (to be pronounced as Lawrence with emphasis on the first syllable) is not known, 
per se, for his contributions to fluid mechanics. Indeed, he was a physicist whose fame rested 
first and foremost on his contributions to the theory of electromagnetism, electrodynamics, 
the theory of electrons and the dawn of relativity. His place among his contemporaries was, 
perhaps, described best by Albert Einstein who wrote ([5] and [6, pp73-76]) in 1953: 

"At the turn of the century the theoretical physicists of all nations considered H.A. Lorentz 
as the leading mind among them, and rightly so." But then, Einstein continues as follows: 

"The physicists of our time are mostly not fully aware of the decisive part which H.A. 
Lorentz played in shaping the fundamental ideas in theoretical physics. The reason for this 
strange fact is that Lorentz's basic ideas have become so much a part of them that they are 
hardly able to realize quite how daring these ideas have been and to what extent they have 
simplified the foundations of physics." 

Einstein is here referring to the theory of electrons which explains the electric and magnetic 
properties of matter in terms of charge and motion of charged atomic particles - the electrons 
- and which has led to concepts now known to us as the Lorentz transformation, the Lorentz- 
Fitzgerald contraction, the Lorentz force, Lorentz invariance, the Lorentz condition and many, 
many more. 

Curiously enough, the ideas he put forward in [ 1 ] have met with a similar fate, at least to 
some extent. Although contemporaries, e.g. [7], fully recognise the importance of his work 
in fluid mechanics, later works, particularly papers appearing in the scientific literature, often 
refer to other, much later [8] sources for some of these ideas. In this context it must be 
recorded that the most excellent survey on creeping flows by Happel and Brenner [9] does 
emphasize the importance of the Lorentz reciprocal theorem, the Lorentz integral-equation 
formulation and the Lorentz reflection theorem, which were all put forward with extreme 
clarity in [1]; such a seminal paper, only six or seven journal pages long and containing at 
least three important ideas! 

The question arises why Lorentz, who was not a professed fluid dynamicist, should have 
decided to tackle some problems in that particular field. Indeed, apart from [1 ], and appearing 
at about the same time, there is a paper on turbulent flow in pipes [10] and a few other 
contributions. That he gave extended renditions in German of both [1] and [10] in 1907 [11] 
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indicates that he considered these two the most important of his works in fluid mechanics, that 
is, at that particular time. Since I do not know of any written evidence explaining why Lorentz 
embarked on those studies, nor does Dr. Kox [12], who is in the process of collating and 
publishing Lorentz's extensive correspondence, we must guess at the reasons for his having 
done so. 

During his entire life as a cognizant scientist, Lorentz had always been a strong advocate of 
the aether concept. Even in his later years, when modern developments in physics showed that 
this concept was no longer needed, he refused to fully divest himself of it. During its heyday, 
the aether was considered to be a medium with rather ill-defined, but possibly fluid-like 
properties. 

An important problem was the interaction of heavenly bodies, such as the earth, with a 
continual aether flow of a kind which was thought to be emanating from the sun. Whether the 
aether behaved as a turbulent or a creeping flow or as a solid body, or alternatively was just an 
immobile medium, was still a moot question. Earlier, another famous name in slow viscous 
flow, Stokes [13], had tried to come to grips with the nature of the aether. It was Kelvin [14] 
who defined the aether as an incompressible fluid in turbulent motion. It is easily imaginable 
that, in the scientific climate of the day, Lorentz decided to indulge in some fluid mechanics 
himself. 

At that time, one of the hot topics in physics was the famous experiment of Michelson 
and Morley, which aimed at establishing the influence of the earth's motion on the velocity 
of light, i.e. aether motion. The negative outcome of that experiment held the physicist of 
those days in its grip. In a series of lectures on aether theories and aether models delivered 
in Leiden (Leyden) during 1901-1902 [ 15], Lorentz attempted to understand the nature of the 
aether on the basis of various fluid-like models. That particular study culminated in theories 
for the motion of a single or several spheres through an inviscid fluid. This makes it easy 
to understand, and the more so because the subject matter was still very undecided, why he 
digressed to study the motion of bodies through highly viscous liquids. 

In what follows I shall give a pr6cis of Lorentz's viscous-fluid paper [1], commenting on 
its contents as I go along. Next, I shall describe his other great venture in fluid mechanics, 
namely his extensive theoretical modelling on the so-called Zuiderzee project [16]. Although 
the latter study concerns flows in which viscosity plays a minor role only, it is interesting 
enough to be reported here, not in the least because it is a veritable piece of engineering 
mathematics. Paraphrasing Einstein's words, we could say that this work is not as widely 
known as it deserves to be. A concise report on its contents may be of interest to some of our 
readers. 

Again, one should realise that Lorentz's fluid-mechanics work is only a very small part 
within his general oeuvre. His nine-volume set of collected works [17] mentions only a few 
papers in fluid mechanics in Vol. IV. There is some further fluid mechanics in Vol. VII. The 
Zuiderzee project is not mentioned at all. There is some more work on the motion of gases, 
but most of it is in relation to kinetic theories. 

Even so, limited in size as it may seem to be in relation to all his other work, Lorentz's 
fluid-mechanics work is by no means of passing interest only. This is what we have set out to 
demonstrate with this special issue. 
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2. Lorentz's fluid-mechanics paper of 1896 

The paper begins with the formulation of the basic equations goveming the flow of an 
incompressible viscous fluid with body forces. Lorentz considers a closed surface a within 
the fluid, thus enclosing a given volume. Within this volume he distinguishes two different 
states of motion. In a succession of very clear arguments he is then able to derive a complicated 
integral relationship which relates the surface stresses to the inertial and body forces in the 
enclosed volume. This is his theorem I. From then onwards he restricts himself to flows for 
which the Reynolds number vanishes - in his terminology this means that the velocities are 
infinitesimal everywhere - and he disregards the influence of body forces. His complicated 
theorem I is then reduced to an extremely clear and useful theorem II which is now called the 
Lorentz reciprocal theorem [9]: 

f Iu'xo +v'yo f (ux" +vr" + = 0,  (1) 

where u, v, w are the velocity components, X,~, Y,~, Zn are the components of the viscous 
force acting at the surface and a prime distinguishes the second state of motion from the 
first. 

In the remainder of the paper he exploits this theorem to obtain two further and equally 
important results. First, he writes down the equations describing the flow due to a sphere of 
radius R moving at a velocity c, which he defines as infinitesimally small, through a highly 
viscous fluid. This solution was derived by Stokes [18]. From this solution Lorentz derives a 
simpler-looking but very meaningful singular solution, which is now known as the stokeslet, 
although it was in this paper by Lorentz [1] that this solution appeared for the first time (see 
below). However, he brushes over the way in which he derived this singular solution, which 
he does not present explicitly. It is only by studying his Eq. (7) that we may understand that 
he really derived the stokeslet 

3 3_zy  w =  (2) 

where { = Rc. All he says is that R tends to zero in the Stokes solution. Lorentz, the 
physicist, must have felt uncomfortable with the fact that the velocity of his second state of 
motion became infinite at r = 0, even if ~ was infinitesimally small but fixed, since that would 
violate his earlier requirement that the velocity should be infinitesimal everywhere. This might 
explain why he did not present Eq. (2) explicitly in [1]. Writing down the Reynolds number 
I(u, v, w)lr/u, where u is the kinematic viscosity, we see that this tends to zero everywhere 
when ~ ~ 0, which explains why (2) is a perfectly admissible creeping-flow solution. It 
would seem, therefore, that he need not have been as concerned about this as he may have 
been. Anyway, going from the perfectly physical Stokes solution to the more elusive singular 
solution is a step which, in Einstein's terminology, is daring. In our days, many of us are 
familiar with the idea of a double limit leading to an interesting singularity, but in Lorentz's 
days this was a daring step, hesitant and partly obscured as it may seem to have been taken. 
Lorentz must have felt intuitively that the major result he was about to derive, I mean the 
integral-equation formulation, justified his taking this step. 

Consulting the more extended German [2] version of [1], we discover that, ten years later, 
Lorentz wrote down Eq. (2) without any reservations with ~ = K/67r#, where K is a force 
and # the dynamic viscosity. Apparently, it was Hancock [ 19] who invented the term stokeslet. 
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He observed that the Stokes solution for the flow induced by a sphere moving through a highly 
viscous fluid can be regarded as the sum of two solutions which are singular at the centre of the 
sphere. One of these is a doublet which induces an irrotational flow. Hancock then continues 
and writes: "... and the other is a singularity peculiar to viscous motion, which will here (for 
want of a better word) be called a Stokeslet...". This apologetic phraseology indicates that he 
was somewhat uncertain when he wrote it down. We now know that he might have coined a 
more appropriate term: the lorentzlet; Year of birth: 1896. 

Using the well-known device of surrounding the point where the force acts by a small 
sphere, making this part of a and then allowing its radius to vanish, Lorentz derived the 
famous integral-equation formulation for slow viscous flows which relates the velocity vector 
at any point inside the fluid to a boundary integral which involves the stresses and the velocities 
on o-. Ever since, and particularly during the past two decades, this formula has been used 
extensively in so-called boundary-element calculations of slow viscous flows. In numerical 
calculations this formulation turns out to be far superior to the familiar formulation based 
on the vorticity and the stream function. Despite its fame and importance, it is not always 
recognised that it was Lorentz who derived this rule a century ago. 

Another very nice application of the reciprocal theorem is the Lorentz reflection formu- 
la. Lorentz asked himself the following question. Suppose we know a flow in full three- 
dimensional space, i.e. we know the velocities and the pressure at every point in R3. Let us 
now introduce a plane surface dividing infinite space into two semi-infinite halves. Can we 
now express the velocity and the pressure in terms of the original solution? Lorentz tells us 
that it can be done when we use his reciprocal theorem and he shows the result. It is amusing 
to read that he leaves out the various mathematical steps needed to achieve this, since this 
would consume too much journal space! In the later German version of the paper [2, page 
38], he tell us how he did it. 

Professor J.B. Keller [20] has pointed out that the Eqs. (9) of [1] can yield surprising 
results. He considers a shear flow with the following velocity components and pressure: ul = 
Uy, v 1 = Wl --- Pl = 0. This flow does not decay at infinity but it does satisfy the full Navier- 
Stokes equations. Then Lorentz's Eqs. (9) yield u2 = Uy, v2 = - 2 U x ,  w2 = 0, P2 = 0. This 
solution is surprising because it has a nonvanishing component v2. Furthermore this solution 
is not unique, since for arbitrary U, V, W, u2 = Uy, v2 = Vx,  w2 = Wx ,  P2 = 0 is a 
Stokes flow which also satisfies Lorentz's Eq. (8). The explanation is that Lorentz's result (9) 
was derived under the unstated assumption that certain integrals over a large sphere vanish as 
the sphere radius tends to infinity. Only then is there a unique solution. For the flows above, 
this assumption is violated. The fact that Lorentz made this assumption is clear from the 
derivation in [2], but it is not mentioned in [1]. 

The paper concludes with a discussion of flows within a region bounded by an arbitrary 
surface a and Lorentz derives a few useful results for these. 

3. The Zuiderzee project 

For most of his conscious life Lorentz had been a theoretical physicist mainly interested in 
understanding the electromagnetic field and its interaction with charged particles. But then, 
at the age of sixty five, he became a mathematical engineer and oceanographer! In 1918 
the Government asked him to take up the presidency of a committee whose task it was 
to investigate the effect of a proposed giant dam on coastal sea-water levels during gale 
conditions. This dam was to be the pidce de rdsistance of the biggest engineering project ever 
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to be undertaken in the country: the closing off of the Zuiderzee (Zuyderzee), a relatively 
large inland body of water. This project aimed at achieving two goals: 1) to protect forever 
the inland coast from the ravages of big storms which had caused devastating inundations in 
the past and 2) to reclaim land for agriculture and human habitation. The geography of the 
pertinent part of The Netherlands is shown in Fig. 2. 

Eight years later the committee presented their final report [16] which contained a wealth 
of information. On the basis of its findings, clear-cut decisions could be made on how to make 
the dam. Its construction was completed in 1932. During subsequent storms the predictions of 
the report have proved their great worth. Most of these predictions resulted from theoretical 
models which were formulated, analysed and computed by Lorentz himself. Later reports [21 ] 
confirm that it was he, and he alone, who carried the modelling burden, because no one else 
really understood how these things worked. In what follows I shall try to give the reader an 
idea of Lorentz's approach. 

Reading through [16], as I did for the purpose of writing this essay, one is struck with 
admiration for the way Lorentz proceeded to tackle an incredibly complicated problem. At a 
time when the only numerical tools were a slide rule and some awkward mechanical calculation 
machines, he set out to come to grips with the problem of wave propagation and flow in a 
shallow-water area of complicated shape and produce results which should be useful from a 
practical point of view. 

The basic idea was simple enough: Construct a model which predicts water levels and flow 
diagrams, then ascertain its accuracy by comparing its predictions with known observations 
from storms which had occurred in the past and then apply the method to the new geometry 
which will exist when the proposed dam will have been put in its place (Fig. 3). In the report 
three models were put forward, the first two resulting from existing practices in oceanography. 
Lorentz, however, proposed a third method which was based on the exact equations of fluid 
motion, which the other two weren't, and then reduce its complexity and make sensible 
approximations, so that calculations became feasible. It is clear from the report that the third 
method got the upper hand. 

Lorentz's approach ran as follows. Realising that it was impossible to make a three or 
even two-dimensional model for a shallow sea with a bottom topography showing depths 
ranging from zero to thirty metres, with rapid depth variations occurring in many places, he 
decided to model the inland sea as a system of interconnecting channels (Fig. 4). To account 
for depth variations in a sideways direction, each of these single channels consisted of a series 
of parallel channels. In Fig. 4, the line bc represents the location of the proposed dam. Once 
it had been constructed, the channels bv and cv would have been cut off. At the points a, e, g, 
k and m, which represent the inlets between the islands, known observations of water levels 
could be used. These were measured during historical storms. At v the water flow into the 
Zuiderzee, as it was measured during those same storms, was entered into the problem as a 
boundary condition. At I there is another outflow into a much smaller inland sea. 

At first, Lorentz assumed the flow situation to be stationary, i.e. water levels at the inlets 
and the outflow at v did not vary in time. Of course, he realised the shortcomings of this 
assumption, but the complication of the model required this restraint. Then, if 1 measures 
distance along a channel and h is the elevation of the surface of the sea above equilibrium, 
the following equation is appropriate 

_ _  1 dh  F c o s ~  + [v[v = 0 (3) 
d l  g p q  ' 
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Fig. 4. Simple channel network showing six loops as used by Lorentz in a pilot calculation. (From ref. [ 16], Fig. 37, 
page 161). 

Here F is the wind stress acting at the surface, but averaged over the depth of the channel, q 
is the equilibrium depth and v is the (average) flow velocity. Further, z9 is the angle between 
the direction of I increasing and that of the wind, g is the acceleration due to gravity and p the 
density of water. Finally, C is a constant representing friction between the water and the sea- 
bed. It is called Eytelwein's constant and its value is about 50 ml/2/s.  The term Ivlv expresses 
that bottom friction forces always act against the direction of flow and are quadratic. 

Integrating Eq.(3) from one end (P) of the channel to the next (Q), Lorentz obtained 

l l 
hQ - hp = gPq Ft b2q3c~lsls , (4) 

assuming that conditions and parameters remained the same along the entire length of the 
channel. If this were too unrealistic an assumption, then a channel was broken up into two or 
more channels. In Eq.(4), b is the width of the channel and s = bqv is the total flow through 
it. 

Lorentz's calculation procedure ran as follows. In a pilot calculation he used values that 
were recorded during the well-documented storm of 22/23 December 1894. He then considered 
a series of open and closed loops as shown in Fig. 4 which he numbered (~) - ~). Starting 
with loop (!) he knew ha (hp in Eq. (4)), but s was unknown along the series of channels 
a ~ b. So, before being able to continue, he had to assume a value for this unknown. Since 
all the other values in Eq.(4) were known from a ~ b, he was able to find provisional values 
of hp, hq and hb. Then he arrived at loop (~1 where the efflux s into the Zuiderzee was known 
(210000 m3/s). Working his way through the loop system and working away on his slide rule, 
until he reached the end at the points m and l, he had to assume the values of a few other 
unknowns. Using an iteration procedure, he then refined these estimates and arrived at the 
final result. 
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Table 1. Channel dimensions for the network as shown in Fig. 4. Channel lenghts 
bi in km, widths qi in metres. The (approximate) angle between wind direction 
and channel direction is given by 0 for the storm of  22/23 Dec. 1894. (From [16], 
Table 19, page 162) 

Channel cross profile 

Channel Length Main channel Subchannel 1 Subchannel 2 

(km) bl x ql b2 x q2 b3 x q3 

ap 10 8.0 x 9.0 2.0 x20.0 - 70 ° 

pq 13 2.0 ×27.0 2.0 x15.0 2.0 x 8.0 70 ° 

qb 15 20.5 × 4.0 1.5 ×20.0 1.0 ×10.0 0 ° 

by 15 17.5 × 6.25 - - 0 ° 

bc 16 12.0 x 6.0 - - 65 ° 

cv 15 14.8 × 7.0 - - 55 ° 

dc 17 9.0 x 6.0 1.5 x16.0 10.5 x 4.0 30 ° 

e r  8.5 1.5 x l 0 . 0  2.5 × 6.0 4.0 × 1.0 30 ° 

r d  12 14.0 x 3.5 2.0 x 8.0 - 30 ° 

f d  19 1.3 x18.0 9.7 x 4.0 2.0 x 9.0 20 ° 

9 f  9 11.0 x 9.0 2.0 x18.0 - 0 ° 

f h  14 1.0 x16.0 2.0 x 9.0 5.0 x 4.0 40 ° 

hd 16 4.0 x 6.5 6.0 x 3.5 - 90 ° 

ih 13 16.0 x 5.0 - - 105 ° 

ki 14 1.2 x21.O 3.8 x 5.0 - 0 ° 

li 19 8.5 x 5.5 - - 120 ° 

ml 13 11.0 x 5.0 1.5 x12.0 - 0 ° 

To give an idea of the dimensions and parameter values of this calculation, some input 
values are listed in Table 1. The end result is shown in Fig. 5, where it is understood that the 
values of h at a, e, 9, k and m and the values of s at v and 1 are known from observation. It 
tumed out that the calculated values of h at the other points agreed very well with the observed 
ones. 

Next, the same calculation was carried out for the closed-off situation, where be is now 
alongside the closing dam. The final result is shown in Fig. 6. As far as the flow pattem is 
concemed, there is a striking difference with that of Fig. 5. Whereas in the open situation 
water flowed in through all the inlets, the closed situation shows that inflow occurs through 
four inlets, but now there is an outflow through the inlet between the island of Texel and the 
mainland. That something like this should happen is understandable when it is realised that 
the storm of 1894 was a north-westerly one. The flow levels are much lower, but the surface 
elevation is higher by more than a metre at the location of the proposed dam. 

Later, Lorentz carried out more refined calculations, using a system of channels as depicted 
in Fig. 2. Table 6 of [16] reveals that the total number of channels and sub-channels in the 
calculation was 120. The iteration procedure described above must indeed have been a very 
laborious undertaking which he shared with his assistant Thijsse [21]. Apart from a slide rule, 
they used one of the early multiplication machines called MillionS. This machine is described 
by Galle [22, pp39-44] and makes an awkward impression, at least by our standards. Indeed, its 
only advantage over the slide rule was accuracy (eight decimals), not speed of calculation. 
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Fig. 7. Simple channel system as used by Lorentz in a time-dependent calculation. (From ref. [16], Fig. 45, page 
179). 

Realising that the assumption of stationary conditions may not be sufficiently accurate 
for the modelling of the occurrences during a violent storm, Lorentz set out to devise a 
time-dependent model. He derived the following set of equations 

Os Oh 
+ = o ,  (5) 

Os Oh i F ,  
Ot - -  slsl + (6) 

P 

where a = gq, ~3 = 9q-2C -2 and F is the wind force per unit area. Further t is the time, x 
the coordinate measuring distance along the channel and s the flow per unit width through 
the channel. After proper non-dimensionalisation (we will use the same symbols for the 
non-dimensional counterparts), Lorentz expanded the dependent variables as follows 

h = ho - hzx + ~hl ixa  - l h i H x  3 + . . .  (7) 

and similarly for s. Substituting these expansions in Eqs. (5) and (6) and equating like powers 
of x, he derived a set of perturbed equations for the coefficients, which were still functions of 
t. Again, assuming uniform parameter conditions along each separate channel, he used these 
expansions to predict values at the far end of such a channel in terms of those at the initial 
point. 

It turned out to be impracticable to carry these calculations beyond the third order. This 
time, only the slide rule was used. Loss of accuracy and the limitations of his slide rule 
prevented him from carrying on beyond that stage. He writes that the method could be used 
for channels up to 20 km in length. If a channel were too long, it had to be divided up into 
separate channels. 

Lorentz came to the conclusion that the limitations of his computational aids made it 
impossible for him to calculate the time-dependent model for a realistic channel system such 
as that of  Figs. 2 and 3, or even that of Fig. 4. So, he decided to do a time-dependent calculation 
on the simplified grid of Fig. 7, which represents the main through-flow of the system, as can 
be seen from Figs. 5 and 6. In this calculation the observed sea-water levels at a and 9 are 
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now time-dependent and so is the efflux at v in the open situation. Carrying out calculations 
on the same system, but now using the stationary model, Lorentz got an idea of the small 
adjustments that had to be made concerning maximum water levels. 

There is much more to be said about this, but that will be beyond the scope of this issue. 
Let it be sufficient to say that Lorentz's predictions were confirmed later on with astonishing 
accuracy [21] by observations made during subsequent gale conditions, that is, after the 
completion of the dam. This should be a sobering thought for those who see themselves 
confronted with impossibly complicated problems in our day and age. Had the Zuiderzee 
problem arisen now instead of 75 years ago, the aspiring researcher would probably have 
decided to write down the complete set of relevant equations in their most daunting form, 
i.e. fully three-dimensional and using the latest data, so that a full-scale picture of the bottom 
topography could be fed into the computer. Yet, concerning some of the physical phenomena, 
such as friction at the sea-bed and wind-wave interaction, such a model would still be fairly 
uncertain. Using large-scale parallel computing on the latest supercomputer, the present-day 
scientist would obtain results which, in all probability, would, at best, only be fractionally 
better than those obtained by Lorentz. Had he used Lorentz's approach, he would have been 
able to do his calculations on the simplest of personal computers and in a matter of seconds. 
But then, apart from a computer, he would also need the insight and modelling powers of a 
man such as Lorentz. There are some now who have these powers, but I feel that all too often 
the lure of modem computing prevents them from using these the way Lorentz did and had to 
do. Are we gradually losing a valuable craft? 

At any rate, Lorentz's work on the Zuiderzee is everything that good engineering mathe- 
matics ought to be: 1) there is a meaningful question or problem arising outside mathematics; 
2) appropriate and insightful mathematical modelling; 3) interesting mathematical analyses 
appropriate for the problem at hand; 4) numerical calculations which aim at bringing forth 
the salient features of the solution; 5) reporting the results in a manner which is geared to the 
needs of and can be understood by those who posed the problem in the first place and are, 
in general, non-mathematicians. And further, all calculations of a specialised technical nature 
are presented in appendices, so as not to interfere with the main line of thought. All this was 
admirably demonstrated in [16]. 

4. Lorentz: the man, the scientist, his personality, his life 

Reading about H.A. Lorentz in reports written by his contemporaries, we get the impression 
that he must have had a remarkable personality. Apparently, he was of a mild and magnanimous 
disposition and free from all conceit. His colleague in Leiden, Kamerlingh Onnes - also a 
Nobel prize winner - once said [23, pp 10,11 ]: "Whenever he is present, the conversation quite 
naturally becomes centred about him. There is nothing contradictory in this, it is self-evident 
and completely natural." 

When his successor in Leiden, Ehrenfest, complained that he himself had not been able to 
solve a particular problem, Lorentz tried to console him as follows: "There is no reason to feel 
defeated by this, as it is clear to everyone that you have done the best you could. To do that, 
each one of us in his own special way and according to his talent, is really all that is required 
of us." Mild as it sounds, some may be inclined to read some hidden irony in this. 

When a not-so-gifted student told him in despair that his briefcase had been stolen with 
his dissertation in it, Lorentz told him not to worry, as he would rewrite the thesis for him. 
The briefcase was never recovered [23, p36]. 
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In his later years, when he had become the natural leader of the international scientific fora, 
Lorentz made serious attempts to keep science out of the clutches of international politics. 
That was not an easy task in the days after World War I, when German scientists had been 
banned from international meetings and were shunned almost everywhere, particularly in 
France and Britain. Notwithstanding his diplomatic skills and perseverance, this unfortunate 
situation persisted for many years. 

His personal success and leadership among his contemporaries was due in part to his 
remarkable linguistic skills. Apart from his native language, Dutch, he appears to have been 
absolutely proficient in German, French and English. And indeed, he has written many papers 
in each of these languages. His book of 1907 [11 ] bears witness to this. In his preface Lorentz 
even writes a kind of apology for this polyglotic presentation. Even so, linguistically, each of 
these papers seem to be flawless. On top of this, he is also known to have corresponded in 
Italian [24]. 

Since he did not travel outside of his native country until the age of 44, it is not clear how 
he acquired those striking linguistic qualities, with one exception that is: French. Although he 
came from fairly observant protestant stock, he lost his religious beliefs early on in life. Yet, 
in his home town of Arnhem, he remained an avid churchgoer; but then, he would attend the 
local church where the services were conducted in French! 

It is remarkable that his international career only took off when he was approaching or 
even well into his middle age. Although he had full access to the international literature and 
maintained an extensive correspondence, he had never met any of his foreign colleagues, 
many of whom he admired greatly, until he was in his mid-forties. Until then he had been a 
provincial scientist who had reported some of his most important work in a language which 
not many foreigners commanded. 

Then, in 1898, pressure was brought to bear upon him to attend an international conference 
in Dtisseldorf, his first outside The Netherlands, and his international career took off with a 
vengeance. Wherever he went, he was asked to preside over meetings. He made extensive 
lecture tours in France, Germany and the U.S,A., addressing his audiences in their native 
languages. He became President-for-life of the famous Solvay conferences which brought 
together the foremost scientists of the day. Again, it was Einstein who wrote [5,6]: "Everyone 
felt his superiority, no one was depressed by it." and he continues, "For me personally he 
meant more than all the others I have met on my life's journey." 

I find it tempting to ask the following question: Would a man such as H.A. Lorentz, had he 
been born in the second half of the twentieth century instead of the nineteenth, have blossomed 
out as a scientist and internationalist as fully and as completely as the historical H.A. Lorentz 
has done? I daresay the answer may have to be no. Two famous lines of Wordsworth's spring 
to mind: "The world is too much with us... Getting and spending we lay waste our powers." 
Our powers of invention perhaps? Although the poet wrote these words long before the days 
of Lorentz and with a different purpose - communion with nature - in mind, they seem to be 
extremely appropriate here. Lorentz grew up in a very provincial country, where nothing out 
of the ordinary happened for decades on end. Outside its borders wars were waged and whole 
populations revolted. By contrast, in The Netherlands a political party with the name "Anti 
Revolutionary" became prominent! Although there were newspapers, the media were far less 
demanding, oppressive and glaringly present than they are now, when no one can escape their 
opiniated demands. Distractions were few and life seemed to have been more regular and 
uneventful than it is now. The young Lorentz of today has a seemingly endless choice of how 
to use his brain. Chances are that he will often make the wrong choices and "lay waste his 
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Fig. 8. Lorentz's funeral procession as it crossed the Market Place of the city of Haarlem on the 9 th of February 
1928. 

powers of invention." And I am not just thinking of the distractions that the non-scientific 
world puts in the way of the aspiring scientist. Who cannot picture for himself the young, or 
the not-so-young student, escaping from the higher tasks of thinking originally and forcing 
out new ideas, who whiles away long hours sitting in front of a computer screen, gazing at 
endless rows of data, pictures and programs? 

Interestingly enough, Lorentz might have become a mathematician instead of a physicist. 
During his entire life, he maintained a strong propensity for and sympathetic attitude towards 
mathematics. In 1877, at the age of 24, he was offered a mathematics chair at the University of 
Utrecht. While on a hiking trip through the mountains he decided to turn it down and, instead, 
apply for a position as a teacher of physics at a secondary school in Leiden. One year later he 
was offered the newly created chair of Theoretical Physics at the University in that same city. 
He accepted. 

We can only wonder what would have been his contribution to science had he become a 
mathematician instead of a physicist. With his interest in the natural world, he might even 
have become an applied mathematician. His later work on the Zuiderzee project strongly hints 
at this. He might have taken a keen interest in the new findings of Korteweg and De Vries 
and brought the field of solitons to fruition long before it actually did. Considering his love 
for the experimental side of physics, which he acquired early on in life, he might have been a 
G.I. Taylor avant la lettre. But also ... he would not have been awarded a Nobel Prize and he 
would, in all probability, not have risen to the heights of fame as he has done in physics. 

When his life came to an end in 1928, the ceremonies surrounding his burial are indicative 
of how the times have changed. Apparently, in those days a scientist could be a national hero. 
These days, the respect that was paid to him by the general public would be bestowed only on 
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people who have risen to prominence in the worlds of sports or show business. The streets of 
the city of Haarlem through which the burial procession would pass were lined with rows and 
rows of ordinary people who had gathered in their thousands (Fig. 8). The national telegraph 
services paid their respects by closing down operations for a few minutes and all over the city 
the national tricolor was put out in mourning. The international scientific world had gathered to 
pay their last respects. Representing their various countries, Ehrenfest, Rutherford, Langevin 
and Einstein spoke at his grave. The last of these eulogized him with the following words [6, 
p73]: ". ..... I stand at the grave of the greatest and noblest man of our time." 

In 1953 the centenary of Lorentz's birth was commemorated in several of the cities where 
he had left his personal mark. One of these was the city of Arnhem, where he was born. For 
reasons that I have not been able to find out, the celebrations were conducted on the 31 st of 
January, although Lorentz was born in the summer. That same night and well into the following 
day the country experienced the worst hurricane in living or even recorded memory. In the 
South-Western part of the country the dikes, which had been neglected because of World War 
II and because the Government had given low priority to the maintenance of the sea defences 
in the early post-war period, burst in many places, causing widespread devastation. Almost 
2000 people lost their lives. The economic losses were enormous. By contrast, the central 
and northern parts of the country experienced hardly any damaging effects. The closing dam 
and the other dikes, which had been constructed and reinforced basically at the direction 
of Lorentz's models, held out triumphantly. Later, a similar project was carried out in the 
South-West. The State Water-Works Department, which is responsible for these projects, is 
said to be still using models, the origins of which can be traced back to Lorentz's ideas. 

5. About this issue 

Apart from this introductory paper, the present issue consists of an English translation of 
Lorentz's paper of 1896 and of fifteen invited contributions. The latter appear in the order in 
which they were received in the Editorial Office. Although it would have been easy to solicit 
many more contributions - indeed, these days slow viscous flow is a very popular research 
topic - fifteen contributions had to be considered a maximum. The size of the special issue 
could not be expanded too far beyond the size of two ordinary issues combined. 

Each of the invited papers separately deals with further developments of the ideas put 
forward by Lorentz in his 1896 paper. I shall discuss these according to the order in which 
these fundamental ideas appeared in Lorentz's paper. 

5.1. RECIPROCAL THEOREM 

Brenner and Nadim derive a reciprocal theorem for micropolar fluids. These are fluids which 
have an internal structure which manifests itself in spin vector fields. They derive a general 
integral relationship, incorporating velocity, spin, stress and couple-stress fields, relating two 
different micropolar flows occurring in the same domain. 

Felderhof discusses a theorem for the flow near bubbles with temperature-dependent 
surface tension and shows that there is a simple relationship between the temperature and the 
velocity fields. He intimates that in some cases an electrostatic version of Lorentz's reciprocity 
theorem could be derived. 
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5.2. STOKESLET (LORENTZLET) 

The flow due to a point force acting within a highly viscous fluid, the stokeslet as it is now 
known, plays a central role in most of the papers of this issue. The papers by Liron and 
Pozrikidis deal with regular infinite arrays of these singular solutions. Without special precau- 
tions, the numerical evaluation of the infinite sums is very inefficient and time-consuming. 
Pozrikidis shows how the numerics can be made far more efficient. Liron's paper presents a 
very detailed description of an analytical approach to such problems. He considers three cases 
to illustrate the efficiency of his procedure. 

The two papers by Lighthill are concerned with the locomotion of swimming microorgan- 
isms. The author points out that these creatures propel themselves with mechanisms that are 
of elongated shape, viz. their flagella. The flow induced by such a flagellum can be described 
by a series of singular solutions which have their origins on the centreline of the flagellum. 
A strict application of Lorentz's integral theorem would require a source distribution on the 
entire flagellum's surface. In the first of his two contributions to this issue, Lighthill discusses 
the equivalence of the two formulations. Of course, in the case of elongated swimming bodies, 
the centreline formulation is the preferred one. 

In his second paper Lighthill presents a definitive description of the locomotion of swim- 
ming microbodies such as single-celled algae, bacteria and spirochetes. When these move, 
their flagella assume a helical shape and this calls for a study of helical distributions of 
stokeslets. 

The paper by Blake and Otto also considers microorganisms. Their paper is concerned 
with the fluid motion induced by such organisms as they attempt to feed themselves. These 
microorganisms produce regular lashing movements with hair-like protruberances called cilia. 
Such motions cause periodic vortical flows, both in the vicinity of and inside these microor- 
ganisms, enabling these to attract and filter out nutrients. To describe this phenomenon, the 
authors employ the concept of a 'blinking' stokeslet. 

5.3. INTEGRAL-EQUATION FORMULATION (BEM) 

During the past two decades, Lorentz's inverse formulation of Stokes's flow problems in terms 
of a set of integral equations has been used extensively in so-called boundary-element (BEM) 
calculations of such flows. The present collection of papers offers a number of examples in 
kind. 

In the study by Power the problem of the interaction of a solid particle and a neutrally 
buoyant drop, both immersed in the same fluid, is formulated. The author derives the appro- 
priate system of integral equations of the Fredholm type and he investigates its properties, 
such as uniqueness. 

The paper by Toose et al. studies the behaviour of non-Newtonian drops immersed in an 
otherwise Newtonian fluid. The presence of the non-Newtonian drop requires the introduction 
of a domain integral in the system. Numerical examples are given, e.g. for a drop containing 
an Oldroyd-B fluid. 

In the paper by Van de Vorst the Lorentz system of integral equations is used in its 
purest form. This author investigates the sintering of systems consisting of highly viscous 
particles. Since the driving force in such a system manifests itself at a particle's surface, 
namely through surface tension and the particle's surface curvature, Eq. (7) of Lorentz's paper 
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applies immediately. Van de Vorst presents some interesting numerical results on the sintering 
of regular particle lattices. 

5.4. REFLECTION THEOREM 

There are five papers in the present collection dealing with this subject in one way or another. 
Hasimoto's theoretical paper presents an alternative derivation of Lorentz's reflection 

theorem in the cases of a plane and a sphere. He then applies his theorem to three problems 
which were originally formulated by Lamb. 

Maul and Kim also consider the reflection theorem for a spherical container and they find 
an alternative formulation for a solution that was originally put forward by Oseen. This new 
formulation has computational advantages. Applications are envisaged in suspension rheology 
and in biophysics. 

Cox's paper investigates the force experienced by a spherical particle positioned within a 
vortical flow near a plane wall. Now, depending upon the characteristics of the vortex, the 
sphere will either become trapped by the vortex or move away from it. This indicates that, in 
the case of a particle suspension, such a vortical region will either end up devoid of particles 
or, alternatively, will be filled up with these. 

Davis employs the reflection theorem to describe the flow around a disk which is moving 
along a plane wall. The flow induced by the disk is modelled by a distribution of stokeslets 
on the surface of the disk, and a set of integral equations in the manner of Lorentz ensues. 
Expressions for the drag and the torque experienced by the disk are derived. 

The study by Keller and Ward is the only one in the set which is devoted to a study of 
the effects of the inertial terms when these are small, but not quite negligible. For the flow 
around a moving cylinder, they extend the existing series expansions, so as to include all 
orders. They point out that their method could be used to derive an accurate expression for 
the drag experienced by a small sphere moving along a plane wall in a low-Reynolds-number 
flow when the radius of the sphere is much smaller than its distance from the wall. In the final 
section of his paper Lorentz attempted to describe a method to calculate this drag. In [2, page 
40] he presented the first two terms. 

6. Concluding remarks 

It is hoped that this special issue of the Joumal of Engineering Mathematics will help to give 
Lorentz's work in fluid mechanics the widespread recognition that it deserves. There are some 
who have known all along the importance of this aspect of his work, but, as Einstein wrote, 
many do not realize that several of the ideas they deem important sprang from Lorentz's mind. 
Should the present issue achieve this, then it will have accomplished its primary goal. 
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